What is 3D Printing?

3D printing is a manufacturing technique, more and more used today to make proofs of concept, prototypes or end-products.

Companies are implementing 3D printing at different stages of their manufacturing processes and rethinking their business strategy with this competitive advantage.
Engineers, designers, and even hobbyists are elaborating innovative applications of this cutting-edge technology. 3D printing is a technique which builds objects layer by layer from a 3D file. The process is literally transforming a digital version of an object, into a physical version.


How does 3D printing work?

There is not one unique way to 3D print. Indeed, when thinking about 3D printing, a lot of people are still thinking about the FDM process. But 3D printing is much more than that. There are actually several possibilities, and technologies to create parts additively. The choice of your 3D printing technology and the material will be determined by your project. What properties do you need? What resistance? Here is how the main 3D printing technologies work.


Plastic 3D printing


  • Selective Laser Sintering or SLS: This 3D printing technique creates objects by sintering the powder inside the printer, using a laser. During this layer by layer process, the powder bed is preheated and a laser sinters the powder according to the 3D model to create the solid object.
  • Fused Deposition Modeling or FDM: This 3D printing method is well-known by hobbyists, but also in education. FDM 3D printers are using one or two print heads for the deposition of melted 3D printing material. The material is melted and extruded through a nozzle, to create the desired object each layer at a time.  FDM is mostly known for being a plastic 3D printing technique, but it is now possible to use it to print metal materials for example.

Resin 3D printing


  • CLIP, or DLS: The DLS technology developed by Carbon works by projecting a continuous sequence of UV images, generated by a digital light projector, through an oxygen-permeable, UV-transparent window below a liquid resin bath. The dead zone created above the window maintains a liquid interface below the part. Above the dead zone, the curing part is drawn out of the resin bath.
  • Polyjet: This resin 3D printing technology spray layers of curable liquid photopolymer on a build tray. The software calculates the placement of photopolymers and support material during the pre-processing stage. Then, during the printing, the resin 3D printer jets, and instantly UV-cures, tiny droplets of liquid photopolymer.
  • Stereolithography, or SLA: Stereolithography the first 3D printing technique ever created. This resin additive manufacturing process us using photochemical processes. It uses liquid photopolymers that can be cured. The build plate moves down in small increments and the liquid polymer is exposed to light where the UV laser draws a cross-section layer by layer. The process repeats until the object is printed.

Metal 3D printing


  • Direct Metal Laser Sintering, or DMLS: These 3D printers create parts additively thanks to a laser, sintering fine metal powder particles to fuse them together. The process is quite similar to the Selective Laser Sintering process for plastic. The difference is the sintering temperature, much higher for metal printing techniques.  Indeed, polyamide needs to be sintered at a temperature of 160°C to 200°C, whereas metal melts at a temperature around between 1510°C and 1600°C meaning that a higher wattage laser is needed to reach that temperature.
  • Selective Laser Melting, SLM: Unlike DMLS, SLM fully melts the powder, and therefore it needs to reach a higher temperature than this other metal 3D printing technique. The printing process then fuses metal powder particles in a full melting process. Then the process stays the same, a laser comes to sinter the powder and creates a solid object layer by layer.
  • Binder Jetting: This additive manufacturing method also creates metal parts additively. Binder Jetting is a binding agent. This liquid binding agent is deposited on the powder, according to the 3D model to create. The powder is lightly cured for solidification between each layer. When the printing process is complete, the build box is removed from the printer and placed into an oven for curing. After this, the parts are extracted from the build box and the remaining powder is removed thanks to brushes and air blowers.

Color 3D printing


  • Colorjet: This technology is creating multicolor parts! Just like other processes, Colorjet technology prints out the object layer by layer. A rolling batch leaves a uniform layer of the sandstone-like powder and then, two printing heads pass over this batch, coloring and adhering to the object at the same time.


Advantages of 3D printing

  • Get faster product development and prototyping

Additive manufacturing is known to be an efficient prototyping technique, but do you know why? 3D printing is faster than traditional manufacturing techniques to create a proof of concept or a prototype.

Indeed, it is possible to make iterations quickly thanks to this process: You print a version, and it is then possible to modify your 3D file directly on your 3D modeling software and then print a new iteration to see if the result meets your requirement. If not, making a new version will not take you more time. Additive manufacturing allows rapid prototyping!


  • Working on better designs and products

3D printing allows for creating products with better design, meaning products can be totally optimized thanks to 3D printing. But how is it even possible? Additive manufacturing can be used to improve existing objects. Using this layer-by-layer technique is a way to manufacture objects in one part, and for some projects, a way to avoid the assembly process. Thanks to that: structures impossible to create with traditional manufacturing techniques can be easily achieved by using this 3D technique.

What are the possible improvements that can be made on a product thanks to additive manufacturing? For example, 3D printing is offering the possibility to get a lighter product by hollowing it. But it is also possible to get it stronger, or stronger and lighter at the same time by working on different structures, such as lattice structures. This specific design feature forms a network of crosshatch sections that strengthen the whole structure. Lattice structures are more than an ornamental feature since they give your final object a reinforced and optimized structure.


  • Using 3D printing as a production process

Additive manufacturing is more and more used for production, and not only for prototyping. The quality of the parts coming out of 3D printers are now similar to parts created with injection molding! By using resin 3D printing, for example, you will be able to reach a high level of detail, technologies such as DLS, or Multi Jet Fusion technology for plastic parts.


  • Mass-customization made easier

Mass customization is a great advantage of additive manufacturing. Creating custom-made products is easier, faster and cheaper. Moreover, mass-customization can be an asset in various fields, such as the medical sector, as we will focus on a little bit later.

3D printing offers the possibility to get different versions of the same product and get parts more adapted for each person each time: it can be an asset for fashion, glasses, medical, etc.


  • Make the most of a great competitive advantage

Implementing 3D printing in your business can represent a significant competitive advantage. If your competitors are not using additive manufacturing yet, you could really start to improve your business strategy and make the most of the advantages they are not able to reach yet.


  • Improve your tooling process

If we often think about additive manufacturing to create prototypes of end products, this technology can actually help you improve your tooling process. 3D printed tools are actually becoming more and more popular for car manufacturers!

This is a great way to get totally adapted tools, implementing additive manufacturing inside your tooling process is allowing you to save time and money.


  • Rethink your supply chain

Your storage and supply chain can be totally changed and improved thanks to additive manufacturing. Using additive manufacturing, you will have the opportunity to manufacture your parts exactly when you need them, meaning you don’t have to deal with a warehouse and inventory. You can rethink this process and get a digital inventory by creating parts on-demand.


  • 3D printing is not that expensive

You might wonder, how much does it cost to 3D print? This manufacturing technique is more and more democratized, this is why it is now quite affordable to 3D print for your prototyping or production process.

It will depend on the technology you need to use for your project. A desktop 3D printer can be affordable. But if you need to produce parts using SLS technology, for example then it might be expensive, especially if you are a small business. But this doesn’t mean that you can’t use an industrial 3D printer!

You can find more information on: